Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. They can also be used when it is necessary to control machine guards allowing the opening of protections only under specific conditions.
The versions with solenoid actuated NC contacts are considered interlocks with locking in accordance with
 ISO 14119, and the product is marked on the side with the symbol shown.

Holding force of the locked actuator

The strong interlocking system guarantees a maximum actuator holding force of $F_{1 \text { max }}=2800 \mathrm{~N}$.

Orientable heads and devices

The head can be quickly oriented in four different directions after unscrewing the 4 fixing screws. Also the key release device and the release button can be rotated in 90° steps, thus obtaining as many as 32 different configurations with the same article.

Key release device with orientable lock

The auxiliary key release device is used to allow the maintenance or the entry into the machinery to authorized personnel only. Rotating the key, will make the same action of the solenoid, that is move solenoid contacts and release the actuator. The device can be rotated allowing the installation of the safety switch inside the machinery and making the release device accessible outside the protection. In this way, the switch is better protected against possible tampering and the external side/surface of the machinery remains smooth.

Key release device and emergency release button

This device performs the two above mentioned functions at the same time. Also in this case the device can be rotated and the release button can be ordered with different lengths. The activation of the button has the priority on the lock, that is with the closed lock it is still possible to press the button and release the switch. To reset the switch it is necessary to bring lock and button to their initial position.

Wide-ranging actuator travel

The head of this switch is equipped with an actuator with a wide range of travel. In this way the guard can oscillate along the direction of insertion $(4.5 \mathrm{~mm})$ without causing unwanted machine shutdowns. This extensive travel is available in all actuators, in order to ensure maximum device reliability.

Contact blocks with 4 contacts

Innovative contact block with 4 contacts, available in different contact configurations to monitor the actuator or the solenoid (patented). The unit is supplied with captive screws and self-lifting plates. Removable finger protection for eyelet terminals.
Highly reliable electric contacts with four support points and double interruption

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered with using common tools. See accessories on page 295.

Emergency release button

This device is used when the safety switch controls hazardous areas where operators may physically enter with all their body. The release button, oriented towards inside the machinery, allows the exit of the operator accidentally trapped also in case of possible black-out. Pushing the button, it will be actuated the same function of the auxiliary release device. To reset the switch, just return the button to its initial position. The emergency button can be rotated, is available with different lengths and it is fixed to the switch by a screw, so to allow the installation of the switch inside or outside the guards.

Not detachable heads and devices

The head and the release device can be adjusted but cannot be detached from each other. This makes the switch more secure since the installer does not need to worry about how to assemble the various pieces, and the switch is less likely to become damaged (small parts being lost, dirt getting in etc.)

Signalling LED type A

In the version with signalling LED type A, two green LEDs are switched-on directly by the solenoid power supply. Wiring is not necessary.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Laser engraving

All the FG series switches are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Signalling LED type B

In the version with signalling LED type B, two LED connection wires are available, one green and one red. Through suitable connections to the contact
 block, it is possible to see the different states of the switch from the exterior.

Three conduit entries

The switch is equipped with three cable entries in different directions. This allows its application in series connections or in narrow places.

Sealable auxiliary release device

Versions with working principle D are supplied with a sealable auxiliary release device used by technicians during the installation or to access the machine in case of black-out. The auxiliary release device acts on the switch exactly as if the solenoid was energised, actuating therefore also the corresponding electrical contacts. Can only be actuated with a couple of tools, this ensures adequate resistance to tampering. If required it can be sealed by means of the hole provided.

Access monitoring

These switches alone cannot protect operators or maintenance men where they may physically enter with all their body in the hazardous area, because a voluntary closing of the protection behind them could allow the restart of the machine. If the authorization to the machine restart is completely granted by these switches, it must be foresee a system to avoid that risk, as for example the pad lockable device to lock the actuator entry, item VF KB2 at page 104 or a safety handle with padlocks as for example VF AP-P11B-200P (page 143).

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several doors are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked doors in their position with a retaining force of 30 N , stopping any vibrations or gusts of wind from opening them.

Selection diagram

\longrightarrow product option

\longrightarrow accessory sold separately

Code structure

FG 60AD1D0A-LP30F20GK900T6

Contact blocks		
	Contacts activated by the solenoid $=\square$	Contacts activated by the actuator ©of
60A	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$
60B	2NC	$1 \mathrm{NO}+1 \mathrm{NC}$
60C	3NC	1 NC
60D	$1 \mathrm{NO}+1 \mathrm{NC}$	2NC
60E	$1 \mathrm{NO}+2 \mathrm{NC}$	1 NC
60 F	$1 \mathrm{NO}+2 \mathrm{NC}$	1NO
60G	2NC	2NC
60H	4NC	/
601	3NC	1NO
60 L	$2 \mathrm{NO}+1 \mathrm{NC}$	1NC
60M	$2 \mathrm{NO}+1 \mathrm{NC}$	1NO
60N	1NO+1NC	2 NO
60P	1 NC	3NC
60R	$2 \mathrm{NO}+2 \mathrm{NC}$	/
605	1 NC	$2 \mathrm{NO}+1 \mathrm{NC}$
60 T	1 NC	1NO+2NC
60 U	/	4NC
60 V	2NC	2 NO
60X	1NO	3NC
60Y	1NO	$1 \mathrm{NO}+2 \mathrm{NC}$
61A	/	$3 \mathrm{NC}+1 \mathrm{NO}$
61B	/	$2 \mathrm{NC}+2 \mathrm{NO}$
61C	/	$1 \mathrm{NC}+3 \mathrm{NO}$
61D	1NC	3NO
61 E	1NO	1NC+2NO
61G	2NO	$1 \mathrm{NC}+1 \mathrm{NO}$
61H	2NO	2NC
61M	3NO	1 NC
61R	3NC+1NO	/
61S	$1 \mathrm{NC}+3 \mathrm{NO}$	1

Working principle

D1D locked actuator with de-energised solenoid
D1E locked actuator with energised solenoid
D5D locked actuator with de-energised solenoid. With key release
locked actuator with de-energised solenoid.
D6D With key release and emergency release button

D7D
locked actuator with de-energised solenoid. With emergency release button

D7E locked actuator with energised solenoid. With emergency release button

Solenoid supply voltage

$024 \mathrm{Vac} / \mathrm{dc}(-10 \% \ldots+10 \%)$
$1120 \mathrm{Vac} / \mathrm{dc}(-15 \% \ldots+10 \%)$
$2230 \operatorname{Vac}(-15 \% \ldots+10 \%)$
$312 \mathrm{Vdc}(-15 \% \ldots+20 \%)$

Signalling LED

A two green LEDs switched-on by the solenoid power supply
B red and green LED freely linkable
C orange and green LED freely linkable
Z without LED

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Preinstalled connectors

without connector (standard)
K900 M23 metal connector, 12 poles, bottom

K110 M12 metal connector, 12 poles, bottom

...	

Please contact our te

Contact type

silver contacts (standard)
G silvercontactswith 1 m goldcoating

Actuators	
	without actuator (standard)
F20	straight actuator VF KEYF20
F21	angled actuator VF KEYF21
F22	actuator with rubber mountings VF KEYF22
F28	universal actuator VF KEYF28

Release button length

$$
\text { for max. } 15 \text { mm wall thickness (standard) }
$$

LP30 for max. 30 mm wall thickness
LP40 for max. 40 mm wall thickness
LP60 for max. 60 mm wall thickness
LPRG
adjustable, for wall thickness from 60 mm to 500 mm

Main features

- Actuator holding force F1max: 2800 N
- 30 contact blocks with 4 contacts
- Metal housing, three conduit entries M20
- Protection degree IP67
- Versions with key release and emergency release button
- 4 stainless steel actuators
- Orientable head and devices, not detachable
- Signalling LED
- Operation with energised or de-energised solenoid

Markings and quality marks:

IMQ approval:	
CA02.03848	
CCC approval:	
E131787	
EAC approval:	

Technical data

Housing

Metal head and housing, baked powder coating.
Three threaded conduit entries:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \text { max }}$:
Max. holding force $F_{z h}$:
Maximum play of locked actuator:
Released actuator extraction force:
Tightening torques for installation:
Tightening torques for installation: see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks:	\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
	\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, EN 61000-6-2, EN 61000-6-3, BG-GS-ET-15, UL 508, CSA 22.2 N. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 N. 14.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.

Positive contact opening in conformity with standards:

IEC 60947-5-1, EN 60947-5-1.

Solenoid

Duty cycle:
Solenoid protection 12 V :
Solenoid protection 24 V :
Solenoid protection 120 V :
Solenoid protection 230 V :
Solenoid consumption:

100\% ED
type gG fuse 1 A
type gG fuse 0.5 A
fuse 315 mA , delayed
fuse 315 mA , delayed
9 VA

【. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data			Utilization category			
	Thermal current (lth):	```10 A 400 Vac 300 Vdc 6 kV 1000 A acc. to EN 60947-5-1 type gG fuse 10 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
	Rated insulation voltage (Ui):		Ue (V) 120 250 400 le (A) 6 5 3 Direct current: DC 13			
	Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$) :					
	Conditional short circuit current: imp					
	Protection against short circuits:		Ue (V) le (A)	243		
	Pollution degree:					
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```8 A 250 Vac 300 Vdc type gG fuse 8 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)			
			Ue (V) le (A)	120	250	
				6	5	
			Direct current: DC13			
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	3	0.7	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	$1.5 \mathrm{~A}$ 30 Vac 36 Vdc type gG fuse 1.5 A 3	Alternating current: $\mathrm{AC} 15(50 \div 60 \mathrm{~Hz})$			
			Ue (V)	24		
			le (A)	1.5		
			Direct c	ent: D		
			Ue (V)	24		
			le (A)	1.5		

Characteristics approved by IMO

Rated insulation voltage (Ui): 400 Vac
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type gG fuse $10 \mathrm{~A}, 500 \mathrm{~V}$
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $X+X+X+X, Y+Y+Y+Y, X+Y+Y+Y, X+X+Y+Y, X+X+X+Y$ Positive opening of contacts on all contact blocks: 60A, 60B, 60C, 60D, 60E, 60F, 60G, $60 \mathrm{H}, 601,60 \mathrm{~L}, 60 \mathrm{M}, 60 \mathrm{~N}, 60 \mathrm{P}, 60 \mathrm{R}, 60 \mathrm{~S}, 60 \mathrm{~T}, 60 \mathrm{U}, 60 \mathrm{~V}, 60 \mathrm{X}, 60 \mathrm{Y}, 61 \mathrm{~A}, 61 \mathrm{~B}, 61 \mathrm{C}, 61 \mathrm{D}$, 61E, 61G, 61H, 61M, 61R, 61S

In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Characteristics approved by UL
Utilization categories: A300 (720 VA, $120 \ldots 300 \mathrm{Vac}$) Q300 ($69 \mathrm{VA}, 125 \ldots 250 \mathrm{Vdc}$)

Data of housing type 1, 4X "indoor use only", 12, 13
In conformity with standard: UL508, CSA 22.2 N. 14

Please contact our technical service for the list of approved products.

Please contact our technical service for the list of approved products.

Working principle

The working principle of these safety switches allows three different working states:
state A: with inserted and locked actuator
state B: with inserted actuator, not locked
state c: with extracted actuator
All or some of these states may be controlled through NO contacts or positive opening NC contacts of the internal contact block. In detail, contact blocks that have electric contacts marked with the symbol of the solenoid ($\exists \nabla$) are switched in the transition between the state A and state B, while the electric contacts marked with the symbol of the actuator (σ) are switched between state B and state C:

Working principle

It is also possible to choose between two working principles for the actuator locking:

- Working principle D: Actuator locked with de-energised solenoid. Actuator release is obtained by power supply to the solenoid (see example of working cycle steps).
- Working principle E: Actuator locked with energised solenoid. The release of the actuator is obtained by power-off to the solenoid. It is advisable to use this version under special conditions because a blackout will allow the immediate opening of the protection.

Example of working cycle steps with FG 60AD1D0A-F21 (switch with working principle D)

Contact positions related to switch states

Solenoid

60Boose

 solenoid
1NC controlled by th

FG 60Da000

 $1 \mathrm{NO}+1 \mathrm{NC}$ controlled by $2 N C$ controlled by the FG 60 Eocoo.$1 \mathrm{NO}+2 \mathrm{NC}$ controlled by
the solenoid the solenoid
1NC controlled by the actuator
FG 60Fooee
$1 \mathrm{NO}+2 \mathrm{NC}$ controlled by
the solenoid 1NO controlled by the actuator
 FG 60Hoeose
4 NC controlled by the 4NC controlled by
solenoid
 1NO controlled by the actuator

FG 60Loose日
$2 \mathrm{NO}+1 \mathrm{NC}$ controlled by the solenoid iNC controlled by the
actuator FG 60M•••••
2NO +1 NC controlled by the solenoid
1NO controlled by the actuator

FG 60R••••••
$2 N O+2 N C$ controlled by $2 \mathrm{NO}+2 \mathrm{NC}$ controlled
the solenoid
the solenoid
FG 6OS•••••
1NC controlled by the
solenoid
2NO +1 NC controlled by
the actuator
the actuator

Legend: Θ With positive opening according to EN 60947-5-1, l interlock with lock monitoring in accordance with EN ISO 14119

Travel diagrams table

$\begin{aligned} & 60 \mathrm{~A} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & \text { 60B } \\ & \text { 1NO }+3 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{C} \\ & \text { 4NC } \end{aligned}$	
$\begin{aligned} & \text { 60D } \\ & \text { 1NO }+3 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{E} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{~F} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & \text { 60G } \\ & \text { 4NC } \end{aligned}$	
$\begin{aligned} & 60 \mathrm{H} \\ & 4 \mathrm{NC} \end{aligned}$	-
$\begin{aligned} & 60 \mathrm{I} \\ & \text { 1NO+3NC } \end{aligned}$	
$\begin{aligned} & 60 \mathrm{~L} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	

Legend:
Closed contact
Cle Contacts activated by the actuator

All measures in the drawings are in mm

Stainless steel actuators

IMPORTANT: These actuators must be used with items of the FG series only (e.g. FG 60AD1D0A).
Low level of coding acc. to EN ISO 14119.

Universal actuator VF KEYF28

IMPORTANT: These actuators must be used with items of the FG series only (e.g. FG 60AD1D0A).
Low level of coding acc. to EN ISO 14119.

Utilization limits

Do not use where dust and dirt may penetrate in any way into the head and deposit there, in particular where metal dust, concrete or chemicals are spread. Adhere to the EN ISO 14119 requirements regarding low level of coding for interlocks. Do not use in environments with the presence of explosive or flammable gas. In these cases, use ATEX products (check the specific Pizzato catalogue).

Accessories

Description

Set of two locking keys
Extra copy of the locking keys to be purchased if further keys are needed (standard supply 2 units). The keys of all switches have the same code. Other codes on request.

Other release button lengths

-LP30

For wall thickness
$15 \ldots 30 \mathrm{~mm}$

-LP40
For wall thickness
30 ... 40 mm

-LP60
For wall thickness
$40 \ldots 60 \mathrm{~mm}$

-LPRG
For wall thickness
60 ... 500 mm

- Avoid torsion and bending on the release button bar.
- Use a bushing or a tube with $18 \pm 0,5 \mathrm{~mm}$ diameter as a guide inside the wall.
- The M10 threaded bar has to be inserted into the guide in order to avoid its bending. The M10 threaded bar is not supplied with the device.
Do not exceed an overall length of 500 mm between the release button and the switch.
- To guarantee the correct device operation, keep a distance of 10 to 25 mm between the wall and the release button.
- Keep clean the release button slipping area. The guide bushing or tube must be cleaned inside, since dirt or chemical products could compromise the device operation.
- Periodically check for correct device operation.

Release button

Article	Description
VF FG-LP15	Technopolymer release button for max. 15 mm wall thickness, supplied with screw
VF FG-LP30	lechnopolymer release button for max. 30 mm wall thickness, supplied with screw
VF FG-LP40	Technopolymer release button for max. 40 mm wall thickness, supplied with screw
VF FG-LP60	Metal release button for max. 60 mm wall thickness, supplied with screw

Safety modules

Pizzato Elettrica s.r.l. offers its customers a wide range of safety modules made considering the typical problems about the control of the safety switches and their real use conditions. Safety modules with instantaneous or delayed contacts are available for the realization of emergency circuits type 0 (immediate stop) or type 1 (monitored stop).

Safety switches with solenoid series FG can be connected to safety modules in order to obtain safety circuits up to PL e in accordance with EN ISO 13849. For any technical information or wiring diagram please
 contact the technical department.

Application example with safety timer

Application example with standstill monitor

